Difference between traditional data and big data

It has become important to create a new platform to fulfill the demand of organizations due to the challenges faced by traditional data. By leveraging the talent and collaborative efforts of the people and the resources, innovation in terms of managing massive amount of data has become tedious job for organisations. This can be fulfilled by implementing big data and its tools which are capable to store, analyze and process large amount of data at a very fast pace as compared to traditional data processing systems (Picciano 2012). Big data has become a big game changer in today’s world. The major difference between traditional data and big data are discussed below.

Data architecture

Traditional data use centralized database architecture in which large and complex problems are solved by a single computer system. Centralised architecture is costly and ineffective to process large amount of data. Big data is based on the distributed database architecture where a large block of data is solved by dividing it into several smaller sizes. Then the solution to a problem is computed by several different computers present in a given computer network. The computers communicate to each other in order to find the solution to a problem (Sun et al. 2014). The distributed database provides better computing, lower price and also improve the performance as compared to the centralized database system. This is because centralized architecture is based on the mainframes which are not as economic as microprocessors in distributed database system. Also the distributed database has more computational power as compared to the centralized database system which is used to manage traditional data.

Types of data

Traditional database systems are based on the structured data i.e. traditional data is stored in fixed format or fields in a file. Examples of the unstructured data include Relational Database System (RDBMS) and the spreadsheets, which only answers to the questions about what happened. Traditional database only provides an insight to a problem at the small level. However in order to enhance the ability of an organization, to gain more insight into the data and also to know about metadata unstructured data is used (Fan et al. 2014). Big data uses the semi-structured and unstructured data and improves the variety of the data gathered from different sources like customers, audience or subscribers. After the collection, Bid data transforms it into knowledge based information (Parmar & Gupta 2015).

Volume of data

The traditional system database can store only small amount of data ranging from gigabytes to terabytes. However, big data helps to store and process large amount of data which consists of hundreds of terabytes of data or petabytes of data and beyond. The storage of massive amount of data would reduce the overall cost for storing data and help in providing business intelligence (Polonetsky & Tene 2013).

Data schema

Big data uses the dynamic schema for data storage. Both the un-structured and  structured information can be stored and any schema can be used since the schema is applied only after a query is generated. Big data is stored in raw format and then the schema is applied only when the data is to be read. This process is beneficial in preserving the information present in the data. The traditional database is based on the fixed schema which is static in nature. In traditional database data cannot be changed once it is saved and this is only done during write operations (Hu et al. 2014).

Data relationship

In the traditional database system relationship between the data items can be explored easily as the number of informations stored is small. However, big data contains massive or voluminous data which increase the level of difficulty in figuring out the relationship between the data items (Parmar & Gupta 2015).


Scaling refers to demand of the resources and servers required to carry out the computation. Big data is based on the scale out architecture under which the distributed approaches for computing are employed with more than one server. So, the load of the computation is shared with single application based system. However, achieving the scalability in the traditional database is very difficult because the traditional database runs on the single server and requires expensive servers to scale up (Provost & Fawcett 2013).

Higher cost of traditional data

Traditional database system requires complex and expensive hardware and software in order to manage large amount of data.  Also moving the data from one system to another requires more number of hardware and software resources which increases the cost significantly. While in case of big data as the massive amount of data is segregated between various systems, the amount of data decreases. So use of big data is quite simple, makes use of commodity hardware and open source software to process the data (CINNER et al. 2009).

Accuracy and confidentiality

Under the traditional database system it is very expensive to store massive amount of data, so all the data cannot be stored. This would decrease the amount of data to be analyzed which will decrease the result’s accuracy and confidence. While in big data as the amount required to store voluminous data is lower. Therefore the data is stored in big data systems and the points of correlation are identified which would provide high accurate results.


  • CINNER, J.E., DAW, T. & McCLANAHAN, T.R., 2009. Factores Socioeconómicos que Afectan la Disponibilidad de Pescadores Artesanales para Abandonar una Pesquería en Declinación. Conservation Biology, 23(1), pp.124–130.
  • Fan, J., Han, F. & Liu, H., 2014. Challenges of Big Data analysis. National Science Review , 1 (2 ), pp.293–314.
  • Hu, H. et al., 2014. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial. IEEE Access, 2, pp.652–687.
  • Parmar, V. & Gupta, I., 2015. Big data analytics vs Data Mining analytics. IJITE, 3(3), pp.258–263.
  • Picciano, A.G., 2012. The Evolution of Big Data and Learning Analytics in American Higher Education. Journal of Asynchronous Learning Networks, 16(3), pp.9–20.
  • Polonetsky, J. & Tene, O., 2013. Privacy and Big Data: Making Ends Meet. Stanford law review, 66(25), p.11.
  • Provost, F. & Fawcett, T., 2013. Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), pp.51–59.
  • Sun, Y. et al., 2014. Organizing and Querying the Big Sensing Data with Event-Linked Network in the Internet of Things. International Journal of Distributed Sensor Networks, 14, p.11.
  • Wielki, J., 2013. Implementation of the Big Data concept in organizations – possibilities, impediments and challenges.

Deepali Aggarwal

Research analyst at Project Guru
Deepali Aggarwal, holds Master’s degree in Computer Science and Engineering. As a student she has worked on technology projects based on Java and PHP. She started her academic career as a Teacher Assistant during her masters, with experience in software development, database administration and management. She exudes command over training and mentoring engineering students. Her areas of interest are data-management, networking and digital image processing. Apart from her interests in academics she also loves dancing, singing and cooking.
Deepali Aggarwal

Latest posts by Deepali Aggarwal (see all)

Related articles

  • Major functions and components of Hadoop for big data With increasing use of big data applications in various industries, Hadoop has gained popularity over the last decade in data analysis. It is an open-source framework which provides distributed file system for big data sets.
  • Importing data into hadoop distributed file system (HDFS) Hadoop is one of the applications for big data analysis, which is quite popular for its storage system that is Hadoop distributed file system (HDFS). It is a Java-based open source framework which stores big datasets in its distributed file system and processes them using MapReduce […]
  • Preferred big data software used by different organisations Big data has been a buzzword in the computing era for over a decade now. It is a term used for large and complex data sets which is difficult to be processed and analysed by traditional data processing software.
  • Understanding big data and its importance Complex or massive data sets which are quite impractical to be managed using the traditional database system and software tools are referred to as big data.
  • Importance of big data in the business environment of Amazon Supply chain management and logistics are the crucial part of the business processes. It is the logistics and the supply chain management that manages the distribution, storage, transportation and packaging as well as delivery of the items. Big data plays an important role in managing […]



Trackbacks and Pingbacks:

We are looking for candidates who have completed their master's degree or Ph.D. Click here to know more about our vacancies.