ARCH model for time series analysis in STATA

By Saptarshi Basu Roy Choudhury & Priya Chetty on October 4, 2018

The previous article showed how to initiate the AutoRegressive Conditional Heteroskedasticity (ARCH) model on a financial stock return time series for period 1990 to 2016. It showed results for stationarity, volatility, normality and autocorrelation on a differenced log of stock returns. The article concluded that the series has an ARCH effect. In continuation, this article presents the ARCH model of the same series.

Applying the ARCH model for time series with lag 1

In order to apply the ARCH model for time series, follow these steps in STATA:

  1. Click on ‘Statistics’ in the output window.
  2. Select ‘time series’.
  3. Select ‘ARCH/GARCH’.
  4. Click on ‘ARCH and GARCH models’.
Figure 1: Pathway for ARCH model in STATA
Figure 1: Pathway for ARCH model in STATA

A dialogue box named as ‘arch- Autoregressive conditional hetroskedasticity family of estimators’ will appear on STATA as shown in the figure below. Select two items; the concerned variable i.e. ‘logRE_d1’, and the number of lags, i.e. ‘1’.

Figure 2: Dialogue box for ARCH model in STATA
Figure 2: Dialogue box for ARCH model in STATA

Alternatively, use the below command for the ARCH model:

arch  Stock_RE_d1, arch(1)

Results for lag 1

The results will appear. A list of iterations will appear showing nonlinear numerical optimization which was done behind the scenes. In this case, it helped maximize the likelihood function. The log-likelihood will increase as the iterations proceed. If the numerical optimization somehow fails, then an error message will appear just after the iterations. The parameter estimates follow the iteration summary.  Therefore, the average return is log 0.0103. The ARCH term’s t-ratio is statistically significant, however, the lag1 is insignificant.

Figure 3: Results for ARCH model with lag 1 in STATA
Figure 3: Results for ARCH model with lag 1 in STATA

Applying ARCH for time series with lag 2

Since the result with 1 lag is insignificant, process the ARCH results once again with a greater number of lags, suppose 2.

Figure 4: ARCH model with lag 2 in STATA
Figure 4: ARCH model with lag 2 in STATA

Alternatively, use the below command:

arch  Stock_RE_d1, arch(2)

Results for lag 2

The results for the ARCH model with lag 2 will appear as shown in the figure below. Similar to the previous case, the log-likelihood will increase the iterations proceed. The parameter estimates to follow the iteration summary. Therefore, the average return is log 0.009. The ARCH term’s t-ratio is statistically significant and this time the lag2 is significant. Therefore, this ARCH model is best fitted.

Figure 5: Results of ARCH model with lag 2 in STATA
Figure 5: Results of ARCH model with lag 2 in STATA

Therefore, the ARCH model correctly examined the trend in the time series of stock returns.

Predicting the variance of a series

It is also possible to predict the variance of this series to get a clarification about the swings invariance over the time. Use this command:

predict Mtarch, variance

‘Mtarch’ here is the name for variance of time series stock returns. The results for above command, however, will not appear in ‘Result’ window, but in ‘Data editor’ window of STATA. In order to examine the movement of a variance of Mtarch, generate time plot using this command:

tsline Mtarch

The result will appear as below.

Figure 6: Time plots of predicted variances under ARCH model
Figure 6: Time plots of predicted variances under ARCH model

Thus the above graph shows that there is a lot more volatility towards the year 2010.

This article demonstrated ARCH model. The next article reviews some extensions of the model such as Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Threshold- Generalized Autoregressive Conditional Heteroskedasticity (TGARCH).

I am a management graduate with specialisation in Marketing and Finance. I have over 12 years' experience in research and analysis. This includes fundamental and applied research in the domains of management and social sciences. I am well versed with academic research principles. Over the years i have developed a mastery in different types of data analysis on different applications like SPSS, Amos, and NVIVO. My expertise lies in inferring the findings and creating actionable strategies based on them. 

Over the past decade I have also built a profile as a researcher on Project Guru's Knowledge Tank division. I have penned over 200 articles that have earned me 400+ citations so far. My Google Scholar profile can be accessed here

I now consult university faculty through Faculty Development Programs (FDPs) on the latest developments in the field of research. I also guide individual researchers on how they can commercialise their inventions or research findings. Other developments im actively involved in at Project Guru include strengthening the "Publish" division as a bridge between industry and academia by bringing together experienced research persons, learners, and practitioners to collaboratively work on a common goal. 

 

Discuss